- 根据适应度值来计算局部最优和全局最优。前者表示迭代以来,该粒子的最优解;后者是局部最优的最优。
- 局部最优对应了局部学习率,全局最优对应了全局学习率,用来计算更新速度。更新速度负责对粒子位置进行更新。
- 粒子的速度有个范围,例子的位置也有个范围。
寻找最优解的函数为
f
(
x
)
=
sin
x
2
+
y
2
x
2
+
y
2
+
e
cos
2
π
x
+
c
o
s
2
π
y
2
−
2.71289
f(x) = \frac{\sin\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}} +e^{\frac{\cos2\pi x +cos2\pi y}{2}}-2.71289
f(x)=x2+y2sinx2+y2+e2cos2πx+cos2πy−2.71289
其函数图像如下
该三维图像代码如下:
from mpl_toolkits.mplot3d import Axes3D
fig = figure()
ax = Axes3D(fig)
X = np.arange(-2, 2, 0.05)
Y = np.arange(-2, 2, 0.05)
X, Y = np.meshgrid(X, Y)
Z = np.sin(np.sqrt(X**2+Y**2))/np.sqrt(X**2+Y**2)+np.exp((np.cos(2*np.pi*X)+np.cos(2*np.pi*Y))/2)-2.71289
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')
粒子群算法Python实现源码:
import numpy as np
def getweight():
# 惯性权重
weight = 1
return weight
def getlearningrate():
# 分别是粒子的个体和社会的学习因子,也称为加速常数
lr = (0.49445,1.49445)
return lr
def getmaxgen():
# 最大迭代次数
maxgen = 300
return maxgen
def getsizepop():
# 种群规模
sizepop = 20
return sizepop
def getrangepop():
# 粒子的位置的范围限制,x、y方向的限制相同
rangepop = (-2,2)
return rangepop
def getrangespeed():
# 粒子的速度范围限制
rangespeed = (-0.5,0.5)
return rangespeed
def func(x):
# x输入粒子位置
# y 粒子适应度值
if (x[0]==0)&(x[1]==0):
y = np.exp((np.cos(2*np.pi*x[0])+np.cos(2*np.pi*x[1]))/2)-2.71289
else:
y = np.sin(np.sqrt(x[0]**2+x[1]**2))/np.sqrt(x[0]**2+x[1]**2)+np.exp((np.cos(2*np.pi*x[0])+np.cos(2*np.pi*x[1]))/2)-2.71289
return y
def initpopvfit(sizepop):
pop = np.zeros((sizepop,2))
v = np.zeros((sizepop,2))
fitness = np.zeros(sizepop)
for i in range(sizepop):
pop[i] = [(np.random.rand()-0.5)*rangepop[0]*2,(np.random.rand()-0.5)*rangepop[1]*2]
v[i] = [(np.random.rand()-0.5)*rangepop[0]*2,(np.random.rand()-0.5)*rangepop[1]*2]
fitness[i] = func(pop[i])
return pop,v,fitness
def getinitbest(fitness,pop):
# 群体最优的粒子位置及其适应度值
gbestpop,gbestfitness = pop[fitness.argmax()].copy(),fitness.max()
#个体最优的粒子位置及其适应度值,使用copy()使得对pop的改变不影响pbestpop,pbestfitness类似
pbestpop,pbestfitness = pop.copy(),fitness.copy()
return gbestpop,gbestfitness,pbestpop,pbestfitness
w = getweight()
lr = getlearningrate()
maxgen = getmaxgen()
sizepop = getsizepop()
rangepop = getrangepop()
rangespeed = getrangespeed()
pop,v,fitness = initpopvfit(sizepop)
gbestpop,gbestfitness,pbestpop,pbestfitness = getinitbest(fitness,pop)
result = np.zeros(maxgen)
for i in range(maxgen):
#速度更新
for j in range(sizepop):
v[j] += lr[0]*np.random.rand()*(pbestpop[j]-pop[j])+lr[1]*np.random.rand()*(gbestpop-pop[j])
v[v<rangespeed[0]] = rangespeed[0]
v[v>rangespeed[1]] = rangespeed[1]
#粒子位置更新
for j in range(sizepop):
pop[j] += 0.5*v[j]
pop[pop<rangepop[0]] = rangepop[0]
pop[pop>rangepop[1]] = rangepop[1]
#适应度更新
for j in range(sizepop):
fitness[j] = func(pop[j])
for j in range(sizepop):
if fitness[j] > pbestfitness[j]:
pbestfitness[j] = fitness[j]
pbestpop[j] = pop[j].copy()
if pbestfitness.max() > gbestfitness :
gbestfitness = pbestfitness.max()
gbestpop = pop[pbestfitness.argmax()].copy()
result[i] = gbestfitness
plot(result)
全局最优解随迭代次数增加的变化情况如下图所示: